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Abstract—A wide range of Bayesian short-time spectral ampli-
tude (STSA) speech enhancement algorithms exist, varying in both
the statistical model used for speech and the cost functions consid-
ered. Current algorithms of this class consistently assume that the
distribution of clean speech short time Fourier transform (STFT)
samples are either randomly distributed with zero mean or deter-
ministic. No single distribution function has been considered that
captures both deterministic and random signal components. In this
paper a Bayesian STSA algorithm is proposed under a stochastic-
deterministic (SD) speech model that makes provision for the in-
clusion of a priori information by considering a non-zeromean. An-
alytical expressions are derived for the speech STFT magnitude in
theMMSE sense, and phase in themaximum-likelihood sense. Fur-
thermore, a practical method of estimating the a priori SD speech
model parameters is described based on explicit consideration of
harmonically related sinusoidal components in each STFT frame,
and variations in both the magnitude and phase of these compo-
nents between successive STFT frames. Objective tests using the
PESQ measure indicate that the proposed algorithm results in su-
perior speech quality when compared to several other speech en-
hancement algorithms. In particular it is clear that the proposed al-
gorithm has an improved capability to retain low amplitude voiced
speech components in low SNR conditions.

Index Terms—Amplitude estimation, Gaussian processes, min-
imum mean-square error, phase estimation, speech enhancement,
stochastic deterministic model.

I. INTRODUCTION

B ACKGROUND acoustic noise is a commonly recurring
problem in applications involving the recording and pro-

cessing of real world speech signals, e.g., speech recognition
and radio communications. Such applications are reliant on a
reasonable signal quality and their performance is often sig-
nificantly compromised by low signal to noise ratios (SNRs).
As a consequence, the problem of speech enhancement, which
attempts to mitigate the negative effects of background acoustic
noise, has received considerable attention for several decades.
In many such cases only a single-channel speech signal is avail-
able. Of the available solutions to the single-channel speech
enhancement problem, short-time Fourier transform (STFT)
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based methods achieve relatively good performance and com-
prise the majority [1]. It is appropriate to further categorize this
class of speech enhancement algorithms into the sub-categories
of spectral subtraction [2], Wiener filtering [3], and statistical
approaches [4]. Of these categories, statistical approaches are
perhaps the most sophisticated. Where the Wiener filtering
category is restricted by linearity, and the spectral subtraction
category involves largely simplified mathematical expressions,
statistical approaches are strictly optimal given a set of initial
assumptions and optimality criteria. Furthermore, statistical
approaches have also been evaluated to be among those with
the best performance [5], [6]. Within this class, Ephraim and
Malah developed two speech enhancement algorithms based on
the perceptual importance of STFT magnitude data, namely the
minimum mean-square error (MMSE) [4] and log-MMSE [7]
short-time spectral amplitude (STSA) estimators. Since their
inception, much research has been undertaken to further under-
stand the mechanism upon which these algorithms operate [8],
[9] and further refine the accuracy of the underlying statistical
model.
In line with Ephraim and Malah’s proposal [4], STFT speech

coefficients have often been assumed to be statistically in-
dependent, zero mean, complex Gaussian random variables.
A number of researchers have focused on alternatives to the
Gaussian assumption of the speech STFT coefficients [10],
[11], whilst others have investigated how the partially incor-
rect assumption of statistical independence between STFT
coefficients might be amended [12]. However, within the
realm of statistical STSA speech enhancement, the assumption
that STFT noise and speech coefficients have zero mean has
received little attention. It is known that the spectral repre-
sentation of random signals involving line components does
indeed have a non-zero mean at the frequencies where these
components exist [13]. Such signals include speech, and also
noise in some scenarios. These non-zero mean characteristics
are reflected within the STFT of these signals, rendering the
zero mean assumption of [4] inaccurate.
In this paper anMMSE STSA speech enhancement algorithm

is developed with a non-zero mean speech signal model. This
model is referred to as the stochastic-deterministic (SD) signal
model and the corresponding algorithm referred to as the SD
MMSE STFT estimator. Incorporating this non-zero mean as-
sumption is important as it generalizes the MMSE STSA algo-
rithm to characterize speech simultaneously as both stochastic
and deterministic. Therefore signal components that are pre-
dictable due to some a priori knowledge, may be considered de-
terministic, and if appropriately exploited, this a priori knowl-
edge may be used to augment and improve the estimation of
these components. For example, in this paper a priori knowl-
edge of periodic components in speech (from previous STFT
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frames) is exploited to improve the estimation of these compo-
nents in the current frame.
Speech enhancement applied to scenarios involving speech

and/or noise signals with deterministic components has been ad-
dressed from several perspectives in the literature. A statistical
approach for entirely deterministic speech models was devel-
oped in [14]. Within the Wiener filtering framework, a speech
enhancement algorithm that considers both stochastic and de-
terministic speech components has been presented in [15]. Hen-
driks et al. considered speech DFT coefficients to be either sto-
chastic or deterministic and derived the MMSE estimate of the
DFT coefficients based on both a hard and soft decision between
the stochastic and deterministic models [16]. However, the har-
monic plus noise model [17], [18] implies that each clean speech
DFT coefficient is neither stochastic nor deterministic, but both
simultaneously, as may be represented by a unimodal non-zero
mean distribution. Such a simultaneous SD noise model has re-
cently been considered [19], however an SD speech model of
this form has remained absent from speech enhancement litera-
ture. This paper addresses this concept in the context of MMSE
STSA speech enhancement.
The entirely stochastic MMSE STSA speech signal frame-

work presented in [4], (and inherited by speech enhancement al-
gorithms based on this literature), largely prevents the exploita-
tion of much of the obvious structure in speech signals when
considered as a function of time and frequency. The periodic
structure of certain parts of a speech signal has been exploited
in the rank deficient covariance matrix assumption in subspace
speech enhancement [20], and can also be seen to be exploited in
some STFT based speech enhancement algorithms [21]. How-
ever, consideration of this periodic structure is absent frommost
developments in algorithms closely related to the MMSE STSA
approach due to the difficulty of incorporating this information
into the entirely stochastic signal models here. As will be seen
in Section IV this periodic structure is easily exploited with the
use of the SD speech model. By explicitly estimating periodic
signal parameters, both harmonic structure and broadband com-
ponents in speech signals can be tracked across time. This al-
lows an increase in the accuracy of estimates of the more pre-
dictable harmonic components in the signal, in both amplitude
and phase.
The remainder of this paper is organized as follows. Section II

establishes the notation used in this paper and discusses the
SD speech model. The SD MMSE STFT speech enhancement
estimator is derived in Section III giving the MMSE optimal
magnitude and maximum likelihood phase of the clean speech
STFT. The robust implementation of this estimator is discussed
in Section IV. In Section V the developed speech enhancement
system is experimentally evaluated and Section VI concludes
the findings in this paper.

II. SPEECH SIGNAL STATISTICS AND NOTATION

If we denote the digital speech and noise signals as and
, respectively, the observed digital noisy speech signal is

then given by1

(1)

1Note that boldface symbols denote random variables, whilst the corre-
sponding plain font symbols represent the values they take.

Based on the perceptual importance of the STFT magnitude in
speech signals, the vast majority of STFT speech enhancement
algorithms operate by modifying the magnitude spectrum of
short-time observations of the signal to better represent that
of . Specifically, observations of within a short-time
segment of length , for are modified
in the discrete Fourier transform (DFT) domain, where corre-
sponds to the window number, and to the window length, in
samples. The STFT representation of is obtained through
the operation,

(2)

for , where corresponds to the STFT frequency bin
number. The parameters and refer to the DFT length and
windowing function respectively. denotes the shift in sam-
ples between successive window frames. Due to the linearity of
the DFT, the noisy speech signal represented in the STFT do-
main is a trivial extension of (1),

(3)

where, for notational simplicity, the dependence on the frame
number will be dropped from the notation where appropriate.
Furthermore it will be useful to consider the phase and mag-
nitude of and explicitly as and

, respectively.
In Bayesian MMSE STSA speech enhancement, the afore-

mentioned modification to observations of is posed as
finding the best estimate of given the observation ,
for all . The definition of “best” is qualified by
minimizing a distortion measure. In the MMSE STSA case
[4] this is the mean square error of , although a range of
distortion measures have been investigated in the literature
[7], [22], [23]. Under the common assumption that each STFT
frequency bin is statistically independent [4], this problem may
be presented as [24]:

(4)

where is the expectation operator.
In order to evaluate this expectation, probability density func-

tions (pdfs) for both and must be assumed. It is the def-
inition of these pdfs that is a very debatable step in deriving the
solution to (4). As mentioned in Section I, the seminal paper
in MMSE STSA speech enhancement [4] assumed both
and to be zero mean complex Gaussian variables. Under
these assumptions, a closed form expression for (4) may be
derived [4]. These assumptions make a good compromise be-
tween established spectral estimation theory and mathematical
tractability. However, more recently much literature has been
published on alternative statistical models for both speech and
noise, reporting promising results [11], [12], [19]. Despite these
investigations, alternatives to the assumption that has zero
mean have not yet been investigated within the MMSE STSA
context. It is known in the theory of harmonic analysis that a
non-zero mean in signal spectra is characteristic of signals with
periodic components [13]. Hence, considering distributed



MCCALLUM AND GUILLEMIN: STOCHASTIC-DETERMINISTIC MMSE STFT SPEECH ENHANCEMENT 1447

with non-zero mean can lead to the explicit consideration of pe-
riodic components in speech. The knowledge of periodic com-
ponents in speech signals has long been applied in the areas of
speech analysis and synthesis [17], and even in certain areas of
speech enhancement [15], [16].
To incorporate explicit consideration of periodic speech com-

ponents into theMMSE STSA speech enhancement framework,
here clean speech signals (i.e., prior to additive noise corruption)
of the following form are considered,

(5)

The signal is an arbitrary zero-mean stochastic process rep-
resenting signal features such as unvoiced speech and highly
non-stationary harmonic content. The sinusoid magnitude ,
phase , fundamental frequency , and the power spectral den-
sity (PSD) of may all vary in time, provided that these
values vary slowly enough to be considered constant within the
window length without introducing excessive error. This def-
inition covers a wide range of acoustic signals, and may repre-
sent the signal models defined in [4], [16], [17], [19], [25] as
special conditions. For example, the signal model in [25] is rep-
resented in the case for all , and the signal model in
[4] is represented in the case for all . The signal models
in [16], [17], [19] may be seen as somewhere between these two
extremes.
Applying the STFT to (5) it is clear that the resulting

data will consist of two distinct components representing
and , respectively, as follows,

(6)
where, is the
discrete Fourier transform (DFT) of the windowing function

, modulated by a complex exponential. Here by defini-
tion, for each , is a zero-mean complex Gaussian
distributed variable, and may be considered a deter-
ministic quantity. Therefore, under the signal model of (5), an
appropriate definition of the probability density function (pdf)
for is,2

(7)

Here, represents a complex non-zero mean, with am-
plitude , and phase . The distribution scale is defined

as and is twice the variance of .
The statistical characterization in (7) will be referred to as the
SD speech model and is the statistical model of speech that is

2All pdfs in this paper are expressed in Cartesian coordinates with polar ar-
guments. For notational simplicity, no subscripts will be used to identify the
random variable that each pdf describes. This should be obvious from the argu-
ments of the pdf, which will be either estimates or observations of this random
variable.

employed throughout this paper.3 Consideration of noise signals
in this paper is restricted to zero-mean complex Gaussian dis-
tributed STFT samples, i.e.,

(8)

where .
Observations of non-zero mean DFT variables were experi-

mentally demonstrated in [16] for synthetic signals consisting
of a sinusoid embedded in white Gaussian noise (WGN).
However it is interesting to see if similar observations can
be made for real-world speech signals. With the use of pitch
contours generated via the RAPT algorithm [26], the phase-nor-
malized STFT observations, , (see Appendix A) of
voiced speech segments were evaluated at the frequencies

corresponding to the fundamental frequency and its har-
monics. In making such observations over many vowels in the
TIMIT database, it was seen that for a given vowel utterance
and harmonic, very often these observations tend to move
throughout the complex plane as shown in Fig. 1(a). Here it
may be noticed that the observations shown do not appear to
be drawn independently from a zero-mean complex Gaussian
distribution. That is, it is clear from the figure that for each
STFT frame the phase-normalized observations from past and
future frames can hold much information on both the current
observation’s magnitude and phase. To further demonstrate
this idea, observations normalized by phase from the previous
frame (i.e., )4

were analyzed.5 The density of these observations in the
complex plane are plotted in Fig. 1(b) and (c) for the vowel
/æ/ (as in the word “had”) and white noise, respectively. It is
clear that while for the case of white noise this density appears
to fit a zero-mean complex Gaussian distribution quite well
(albeit not perfectly due to the correlation between frames
due to windowing overlap), this is not the case for the speech
segments of the vowel analyzed. Detail on how information
from neighboring frames is used to estimate the mean of the
current frame STFT observations is discussed in Section IV-A.

III. THE SD MMSE STFT ESTIMATOR

If the variables, and are assumed independent for all
, then the MMSE STSA estimation problem stated in (4) may
be written as,6

(9)

3For , is identical to the complex Gaussian models
employed previously in MMSE STSA speech enhancement. Also in the limit,

, , where denotes the Dirac
delta function (i.e., in this case becomes a deterministic quantity).
4 denotes the argument of a complex number in this paper.
5To demonstrate the intended point, the observations normalized by phase

from the previous frame are required as the absolute phase is arbitrary, due to
the arbitrary alignment of STFT windows with the signal.
6Equation (9) may be obtained by evaluating the expected value of the regular

Bayesian integral formula, [24, (11.6)], using the identity for the integral of
Cartesian functions in curvilinear coordinates (polar coordinates in this case),
stated in (9) of [27, Chapter 6].
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Fig. 1. (a) A set of phase normalized observations plotted on the complex plane
for an utterance of the vowel /æ/. Observations are indicated with dots, and lines
are drawn between consecutive observations. The dotted line, dashed line and
solid line, correspond to the second, fourth and fifth harmonics respectively.
These harmonics were chosen as their observations are reasonably separated in
the complex plane here, (i.e., chosen for clarity). (b) and (c) refer to the density
of phase normalized observations in the complex plane, (b) at the fundamental
frequency of the 709 utterances of the word “had” in the TIMIT database, and
(c) at 150 Hz for an equivalent length of white noise. All figures use a sampling
rate of 8 kHz and STFT parameters , and was a
Hamming window.

The pdf, , is given in (7). From the noise statistical
model defined in (8), may be derived with
the use of (3),

(10)
Following the derivation in Appendix B, it is found that,

(11)

where represents the gamma function, and and
represent the modified Bessel functions of zero and first order,
respectively. Here, is defined as,

(12)

and , and are given by,

(13)

The MMSE STSA estimator described in [4, (7)] may be con-
sidered to be a special case of the estimator described in (11)
for . Under this condition, and may be thought of

as the a priori and a posteriori SNRs as they are defined there.
However, as , then to think of as an a priori SNR is
no longer appropriate because most of the signal power is then
represented in the term . In this case better represents
the uncertainty or randomness of the signal about its more pre-
dictable component . Here it may bemore appropriate to refer
to as the signal prediction to uncertainty ratio. It may also be
better to consider as the a priori signal uncertainty to noise
ratio. Despite these alternative descriptions, it is more mean-
ingful in this paper to consider a different set of parameters.
Considering the discussion in Appendix B, it is clear that

the MMSE STSA estimation problem results in finding the ex-
pected value of the magnitude of a complex Gaussian variable
with a non-zero mean,

(14)

and scale parameter,

(15)

The variable will be referred to as the a posteriori mean, al-
though it may also be thought of as theMMSE a posteriori com-
plex signal estimate (i.e., ). The variable
will be referred to as the a posteriori uncertainty. It is inter-
esting to note here that (14) is a weighted average of the form

where , and . Further
insight into these parameters is largely dependent on the value
of and is described here for two distinct cases: (i) ,
where the MMSE STSA estimation problem reduces to that de-
scribed in [4], and (ii) , which concerns the SD speech
model in (7).

A. SD MMSE STFT Estimation for the Case

Analysis of the SDMMSE STFT estimator for the case where
has been thoroughly studied in [4], [8], [9], although

allowing for the possibility that requires some further
discussion. In the case , is the observation with
some attenuation, , where,

(16)

is equivalent to the Wiener filter gain for DFT frequency
bin , hence in this case is the observed STFT processed via
a Wiener filter. The way in which the clean speech magnitude
estimate depends on and is dependent on the ratio of
the power between these two quantities (i.e., the a posteriori
mean to uncertainty ratio),

(17)

This ratio is expressed in (12) and for the condition here it may
be simplified,

(18)

Ephraim and Malah [4] deduced that the MMSE STSA es-
timator approximates the Wiener filter under the condition
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Fig. 2. The gain applied to the magnitude of the a posteriorimean to obtain the
resulting STFT magnitude estimate , as a function of . This gain is also
plotted for the Wiener filter for reference. For values of , the difference
between the Wiener and MMSE STSA estimators appears insignificant.

(i.e., for the case ). This is again realized in the
context of parameters and when considering that,

(19)

However, the MMSE STSA estimator significantly differs from
the Wiener filter in the case that . This difference may be
observed in Fig. 2, where the relative magnitude of to that
of is shown. This ratio is a function of only. As ,
the MMSE STSA estimates of become significantly large
relative to . In fact, in the Wiener filter case, for

, and considering (11), for the MMSE STSA estimator
we have,

(20)

This insight into the MMSE STSA estimator may be described
as an extreme reliance on the a priori information found in
under the condition that the estimate is very uninformative
in comparison. The idea of compromise between learning from
the new information in and relying on the a priori informa-
tion contained within dependent on the value of was
discussed in [4].

B. SD MMSE STFT Estimation for the Case

Extending to the case where , in (14) may be larger
or smaller in magnitude than the observation , dependent on
the a priori mean . The set of possible values for in
this case is shown in Fig. 3 for a given and . It is seen
here that the exact value of depends on the Wiener term, .
In a similar way as for the case , a value of
results in a value of that is very close to the observation
in the complex plane. A value of results in a value of
with extreme reliance on the a priori information, which now

resides in both and .
For the case , is given in (12). Similar insights

here may be applied as for the case , namely (19) and
(20) still apply. However, for the case that the resulting
value of is now a weighted combination of and the a priori
information dependent on .
It is worthwhile noting here that, because this weighting be-

tween and is performed in the complex plane,
is not only a function of the magnitudes and , but also a
function of the phase difference . It is of interest
to see what effect may have on . The effect of increasing

Fig. 3. The set of possible values of in the complex plane, for given values of
and . Values of for approximate values of are explicitly

indicated.

Fig. 4. Three values of a posteriorimeans , and corresponding to three
noisy spectral observations , and , respectively, plotted in the complex
plane for and . Here , ,
and . The decrease in is clear as .

for given values of , and is shown in Fig. 4.
Here, it appears that any increase in up to will re-
sult in a decrease in . After this conjecture it is reasonable
to consider the difference of (squared) magnitudes of for the
case and the case . This quantity may be consid-
ered the a posteriori mean reduction due to phase error and it is
given by,

(21)

From this expression it is clear that the closer modulo is
to 0 or , the larger . Any movement further away from
these values will result in a decrease in , with a minimum

occurring at .

C. Phase Estimation

It may be noticed in Fig. 4 that in the SD MMSE STFT es-
timator for the case , the phase of does not coincide
with either or , unless or . In ob-
serving this, it may be conjectured that the best value for is
not but another value, perhaps dependent on . Given that
(11) is used to estimate , then a good estimate of may
be given by that which gives the maximum likelihood under the
condition . In maximum likelihood estimation theory
[24], it is well known that this value is given by a solution to,

(22)

where is given in (40). In solving this
equation it is found that the maximum and minimum likelihood
values of under the condition , are the set of
values that satisfy the equation i.e.,
the values and . Upon again
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differentiating (22), the value of this second derivative at these
potential maxima/minima shows that the value,

(23)

does indeed provide a function maxima, and hence it is the max-
imum likelihood estimate of under these conditions. This
provides a method of clean signal phase estimation that is po-
tentially more accurate than the noisy phase alone. Given more
accurate estimates of phase are possible, then an improvement
in speech quality is likely [28]. The resulting accuracy of the
estimated phase is dependent on and hence the estimation of

, and . For the experiments in this paper the es-
timation of and is described in Section IV.

D. Interpretation of the SD MMSE STFT Estimator

The (11) and (23) completely describe the estimation of
for the SD MMSE STFT estimator in terms of the values ,

, and . Following the discussion here, it is per-
haps more meaningful to consider that the SDMMSE STFT es-
timator not as the solutions to (11) and (23) but as an algorithm
comprised of the following set of steps:
1) Find for the case with the use of (14)
2) Reduce the mean magnitude according to phase difference

with the use of (21)
3) Calculate the estimate by applying the gain function
plotted in Fig. 2 to

4) Calculate the phase estimate with the use of (23)
5) Use the data to re-synthesize the estimated clean
signal via the inverse DFT and overlap-add method [1].

With the series of steps above, the values of , and are
explicitly featured in steps 1, 2 and 3, respectively.

IV. ROBUST IMPLEMENTATION

A. Speech Parameter Estimation

The SDMMSE STFT speech enhancement estimator derived
in Section III and requires the estimation of and . If
the speech signal is considered to be of the form in (5) then the
estimation of each of these statistical parameters reduces to the
estimation of and the PSD of .
If it is considered that the values are harmonically related

for all , then estimation of the parameters may be re-
duced to the estimation of and for where

and denotes the floor operator. The harmonic
relationship of is a typical assumption made in the research
of pitch estimation algorithms [29].
For the purposes of the investigations in this paper, only a

single speech source is assumed present. With regards to the
estimation of the pitch ( ) of a single talker in the presence
of a non-harmonic noise source, the maximum-likelihood pitch
estimation technique is known to perform well in low SNRs of
approximately 0 dB [30], and it is the method employed in this
paper. Specifically will denote the maximum-likelihood
estimate of at frame .
There are many methods for estimating and in the liter-

ature [13], [30]. Recently, several publications have shown that
the use of the methods in [13] are effective for spectral esti-
mation in STFT based speech enhancement [31], [32]. In the

experiments conducted in this research, the results confirm that
this provides an effective method for estimating spectral ampli-
tude and phase information for speech signals over the typical
sample lengths of the STFT. Hence, in this paper the method of
harmonic analysis in [13, Chapter 13] is used to provide esti-
mates for and . Specifically the estimate of at fre-
quency obtained from an arbitrary data source, , will be
denoted and is obtained with the use of [13, equa-
tion (13.6)].
Acknowledging that during a vowel segment of speech, the

complex mean of periodic components in speech is likely to be
slowly varying, given a sufficiently short frame length and a
sufficiently large frame overlap. It is then possible to further
reduce the variance of the estimator with the use
of information from previous frames. In the experiments in this
paper, the final estimate, , of is obtained as,

(24)

for and . Here denotes the
inverse DFT operation, is a mean estimate smoothing param-
eter and . The term is used to nor-
malize phase for the expected shift in time between successive
windows (see Appendix A). A value of has provided
good results in the experiments in this paper. Finally the esti-
mate, , of at frame may be obtained by applying
the STFT operation (i.e., that indicated in (2)) to the signal in
(5) with and estimated parameters ,

and .
The “decision-directed” approach to the estimation of or

equivalently , presented in [4, (51)], has been identified as
a crucial feature of the MMSE STSA estimator in providing a
high level of signal quality [9]. To maintain the established ad-
vantages of the decision-directed approach, it is important that
the method of estimating used here is equivalent to this ap-
proach for the case . Considering the definition of

as , the extension of the decision-directed
approach for the estimate of in the case is trivial.
If we denote for frame as , then the estimation
of may be described as,

(25)

where may be seen as a smoothing parameter. For the case
for frames and , does

indeed represent the decision-directed estimator of [4] provided
that . For the experiments in this paper,
(25) is used to estimate .

B. Robustness to Estimation Errors

After the discussion in Sections III-B and IV-A, it is clear that
spurious values of can result in correspondingly spurious
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Fig. 5. A system diagram highlighting the major functions within the SD MMSE STFT speech enhancement algorithm. Signal flow is from left to right, except
where indicated otherwise via the use of arrow heads. Usage of the term indicates a single frame delay (i.e., it occurs where data from the previous window/
frame is used). The switch shown represents the use of a non-zero complex mean only in frames where voice is detected present, as discussed in Section IV-B. The
method of noise signal estimation used in this paper is described in Section V-B1.

values of . Hence the resulting value of may include large
spurious spectral peaks depending on the estimation of .
Due to the recursive estimation methods in (24) and (25) such
peaks will likely cause further errors in and .
Here two important methods of ensuring robust parameter es-
timation are discussed.
STFT analysis of an arbitrary speech signal is expected to

present a number of STFT frames that do not contain any
periodic components, for example, those representing speech
pauses and a range of unvoiced consonants. Hence, setting

in these frames would be theoretically inaccurate.
Furthermore a high proportion of these STFT frames that
are lacking in periodic components are reliably detectable in
relatively low SNRs with a simple voice activity detection
(VAD) algorithm. In the experiments in this paper, the values

for all were imposed where voice was detected absent
via [33]. Where background noise is sufficiently stationary, a
VAD algorithm will be sufficient to estimate also, hence
such an algorithm may be considered of almost no additional
computational expense.
To further improve the speech enhancement process under

poor estimation of in voiced speech segments, a method
of reducing the amplitude of spurious estimates must be consid-
ered. Accounting for speech presence uncertainty as described
in [4] is well known to notably improve the performance of
the MMSE STSA estimator. Conceptually, this method may be
thought to pull estimates of towards zero when the corre-
sponding observation is more likely to be noise than speech.
Therefore, applying similar principles here may increase the ro-
bustness of the SD MMSE STFT estimator. It is known for a
given set of noise and speech pdfs, the MMSE STSA estimator
under speech presence uncertainty is [4],

(26)

where represents the hypothesis that speech is present
in the observation . For the SD MMSE STFT estimator,

is given in (11). Under the statistical
models assumed in (8) and (7), the generalized likelihood ratio,

must be derived. Here
, and is the probability of speech absence

in . Applying the pdfs of (7) and (8), is given by,

(27)

It should be noted here that with the mean and variance esti-
mation described in (24) and (25), the consideration of signal
presence uncertainty mentioned here was required to provide
any improvement in speech quality. Without it, erroneous esti-
mation of and caused too many artefacts for the proposed
speech enhancement algorithm to prove effective. In particular,
the erroneous estimation of and begins to consistently
become audible with . However, the consideration of
speech presence uncertainty presented here is very effective in
attenuating spurious estimates of due to spurious esti-
mates of either , , or . This was observed to the extent that
the algorithm continued to perform well in the case where large
errors were deliberately forced on these parameters, as will be
seen in Section V-B3. Whether the proposed algorithm can per-
form without the consideration of speech presence uncertainty
under more reliable estimation of is left for further re-
search.

Algorithm Overview

The implementation of the complete system is shown in
Fig. 5. Here the dependence of each of the system functions on
others is clearly indicated.
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Fig. 6. A series of spectrograms indicative of the performance of the MMSE
STSA and SD MMSE STFT algorithms. (a) A clean speech signal of the utter-
ance “American newspaper reviewers like to call his plays nihilistic,” (b) the
clean speech signal in (a) corrupted by WGN at 5 dB SNR and bandwidth lim-
ited according to [35], (c) the corrupted speech signal in (b) processed by the
MMSE STSA algorithm, (d) the corrupted speech signal in (b) processed by the
SD MMSE STFT algorithm. Notable speech components present in (d) but not
(c) are explicitly indicated.

V. EXPERIMENTAL EVALUATION

A. Demonstration With Specific Signals

At the output of the SD MMSE STFT algorithm, weaker de-
terministic components in speech are retained when compared
to the output of the MMSE STSA algorithm. This observation
is demonstrated in the spectrograms seen in Fig. 6, where some
areas in which weak speech components are retained in the SD
MMSE STFT algorithm, but not in theMMSE STSA algorithm,
are explicitly indicated. In hypothesizing why this may be, there
are two obvious advantages the SD MMSE STFT algorithm
has over the MMSE STSA algorithm. Firstly, with the use of
(24), information specific to a periodic component is tracked
across changes in frequency in the proposed algorithm, whereas
the MMSE STSA algorithm considers each DFT coefficient en-
tirely independently. Secondly, a lower averaging coefficient of
the mean spectrum ( in (24)) compared to that of the sto-
chastic spectrum ( in (25)) means that the SD MMSE
STFT algorithm is able to more closely track likely speech com-
ponents (i.e., at the harmonics of the fundamental frequency).
To demonstrate the ability of the SD MMSE STFT algorithm

to better retain weak speech components, another experiment

Fig. 7. A set of spectrograms indicating the ability of the MMSE STSA and
SDMMSE STFT algorithms to enhance a signal with known properties. (a) The
clean synthetic harmonic signal, (b) the clean signal in (a) corrupted by WGN
to give a minimum sinusoidal component SNR of 40 dB and a maximum of
10 dB, (c) the corrupted signal in (b) enhanced by the MMSE STSA algorithm,
(d) the corrupted signal in (b) enhanced by the SD MMSE STFT algorithm.

was conducted. Here the clean signal was comprised of 0.25 sec-
onds of silence followed by 0.815 seconds of a harmonic signal.
The harmonic signal included 22 sinusoids harmonically related
with a fundamental frequency of 180 Hz. The SNR of these si-
nusoids was varied at equal intervals on a dB scale from 10 dB
at 180 Hz to 40 dB at 3.96 kHz, and each sinusoid had a con-
stant phase offset randomly selected from a uniform distribution
between 0 and . This clean signal was corrupted by WGN
and enhanced by both the MMSE STSA algorithm, and the SD
MMSE STFT algorithm. Both algorithms were given perfect
knowledge of for all , and the SDMMSE STFT algorithm
was given perfect knowledge of the fundamental frequency of
the clean harmonic signal. The results from this experiment are
displayed in Fig. 7. When observing the harmonic components
at frequencies of approximately 2500 Hz in Fig. 7(c) and (d)
(for example the 12th harmonic at 2340 Hz and an SNR of
18.57 dB) it is clear that the SD MMSE STFT algorithm is

more capable of retaining these components than the MMSE
STSA algorithm.
Fig. 8 highlights another point of difference between the

MMSE STSA and SD MMSE STFT algorithms seen in the
same experiment. Here, observing the spectral amplitude of a
frequency bin centered on a particularly low SNR sinusoidal
component the SD MMSE STFT algorithm is able to respond
to the onset of this component in a smaller number of frames
than the MMSE STSA algorithm. The preservation of tran-
sient speech components is known to be important for speech
intelligibility [34].

B. Objective Evaluation Experiments

Here the proposed estimator is evaluated under a range of
conditions. Specifically four alternative algorithms are chosen
for comparison: the MMSE STSA algorithm with speech
presence uncertainty (M-SPU) [4], the log-MMSE algorithm
(M-LOG) [7] and a Wiener based algorithm that incorporates
both speech presence uncertainty and stochastic and determin-
istic speech components (W-SD), i.e., the algorithm in [16] that
relies on a Gaussian model for stochastic speech components.
The proposed algorithm will be referred to as M-SD.



MCCALLUM AND GUILLEMIN: STOCHASTIC-DETERMINISTIC MMSE STFT SPEECH ENHANCEMENT 1453

Fig. 8. Time magnitude plots of a specific bin of the spectrograms in Fig. 7
(i.e., the bin corresponding to the peak of the 8th harmonic of the clean signal).
MMSE STSA, SD MMSE STFT, Noisy signal and Clean signal correspond to
Fig. 7(d), (c), (b) and (a), respectively.

The M-SPU and M-LOG algorithms work as broad reference
algorithms as they are very common in experimental compar-
isons in speech enhancement literature including many of the
algorithms developed with alternative statistical speech models
and distortion measures considered in [11], [12], [22]. These al-
gorithms are also known to provide speech enhancement results
that perform well with regards to subjective measures of speech
quality [5]. In addition, the M-SPU algorithm represents a spe-
cial case of the estimator developed in this paper, where
for all . The W-SD algorithm provides performance that
is both indicative of Wiener filtering algorithms and of current
speech enhancement theory that considers deterministic speech
components.
The M-SD algorithm will be evaluated with both the pitch

track obtained from the noisy speech signal as described in
Section IV-A, the pitch track obtained from the clean speech
signal also via maximum-likelihood techniques [30] (with
speaker dependent frequency limits), and a randomly gener-
ated pitch track where each frequency sample was randomly
and uniformly distributed between 70 Hz and 350 Hz. These
methods are denoted in the results here as M-SD-N, M-SD-C,
and M-SD-R, respectively. M-SD-C demonstrates the algo-
rithm’s potential performance given more accurate estimates of
may be possible, and M-SD-R demonstrates the effective-

ness of the robustness considerations in Section IV-B, in the
case of erroneous pitch estimation.
The W-SD algorithm requires estimates of the frequency of

sinusoids in speech. The estimates provided here (in oscillations
per sample) are where . This differs
from the methods in [16] in that there is a harmonic restriction
on the relationship of sinusoids. This ensures the algorithm’s
consistency with the proposed estimator. To eliminate any hand-
icap from imperfect pitch estimation, the results here only show
the W-SD algorithm with the more ideal case of estimated
from the clean speech signal.
Algorithm Configuration: For all algorithms, was a

Hamming window, , and . Each
of the algorithms tested make use of the decision-directed
estimate of . With regard to this estimate, and
a minimum value of dB was imposed. These
values were chosen for consistency across all algorithms and
to follow the recommendations in the literature, however, in
informal tests it was observed that M-SD performed better with
a slightly decreased value of . All tested algorithms
operate under speech presence uncertainty (i.e., according to

(26)). For the M-SPU and M-SD algorithms . This
value was empirically determined to provide effective results
in both algorithms. The W-SD algorithm was configured as
suggested in [16].
For the proposed algorithm, of (24) was set to .

To prevent artifacts due to inaccurate frequency estimates at
high frequencies and estimates outside of the signal bandwidth
(approximately 300 Hz to 3.6 kHz for radio communications),
deterministic component estimates obtained via (24) were only
estimated for frequencies less than 3 kHz. Finally, estimates of

were obtained by averaging over the magnitude spectra in
the first 495 ms of data (i.e., for ), where during this
segment . This noise only segment was removed from
the signal prior to objective performance evaluation.
1) Data: All objective results presented in this paper were

averaged over 300 speech utterances from the TIMIT database.
Specifically, these utterances consisted of the “phonetically-di-
verse” sentences from 100 different speakers (equal parts male
and female) belonging to the TIMIT test set. Three types of
noise were used, including WGN, factory noise and babble
noise. WGN was chosen as it closely fits the assumptions
made for the noise statistics here [4]. Factory noise and babble
noise represent less and less stationary noise sources, and were
chosen to test the algorithm’s robustness to variable noise
conditions. Babble noise is a particularly problematic case as it
may contain many spurious deterministic components.
Each speech utterance was combined with a randomly se-

lected noise segment from each noise source at SNRs of 5 dB,
0 dB, 5 dB, 10 dB and 15 dB, according to the recommendations
in [36]. Perceptual evaluation of speech quality (PESQ) [37],
was used as an objective quality measure here. This measure
is well known to correlate highly with mean opinion subjective
test scores [38], and is a measure adopted in much of the speech
enhancement literature.
2) Results: The results of the objective tests conducted

here are shown in Fig. 9. For clarity of presentation, only
the M-SD-N algorithm is shown in Fig. 9(a)–(c), whilst the
relative scores of M-SD-C, M-SD-R and M-SPU are compared
to M-SD-N in Fig. 9(d)–(f). Noting that M-SPU represents the
algorithm in this paper without any consideration of determin-
istic components, it is clear that under all conditions, use of
the SD signal model improves the PESQ results regardless of
frequency estimation. Specifically the most substantial perfor-
mance improvement is observed at mid to low SNRs ( 5 dB
to 5 dB). In the case of white noise, the averaged PESQ differ-
ence between M-SPU and M-SD-C is between 0.13 and 0.16
for these SNRs. A more significant difference was observed
when considering only male speakers. The maximum PESQ
improvement observed over the M-SPU algorithm was under
the 0 dB white noise condition, with a PESQ difference of 0.44.
Fig. 9(d)–(f) demonstrate that the accuracy of frequency esti-

mation does affect the performance of the algorithm. However,
it is interesting to note here that the M-SD-R algorithm has per-
formance comparable to the M-SPU algorithm. This is a testa-
ment to how effective the consideration of speech presence un-
certainty is in reducing the effect of spurious DFT coefficient es-
timates due to erroneous pitch estimation. That is, in the experi-
ments conducted, it was observed that given an erroneous pitch
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Fig. 9. PESQ testing results performed under three noise types (a, d) WGN, (b, e) factory floor noise, (c, f) babble noise. Figures (a–c) present absolute PESQ
results for the proposed and reference algorithms, and Figures (d–f) present the results of M-SD-C, M-SD-R and M-SPU relative to the PESQ score for M-SD-N.
For Figures (a–c), ( ) M-SD-N, ( ) M-SPU, ( ) W-SD, ( ) M-LOG, ( ) Noisy Signal. For Figures (d–f), ( ) M-SD-C, ( ) M-SD-R, ( ) M-SPU.

estimate, negligible degradation was observed at the output of
the algorithm, however a reasonably accurate pitch estimate im-
proved recovery of the clean signal STFT.
3) Subjective Quality of Results: It was observed in informal

listening tests that the M-SD algorithm had a clearer and less
muffled quality when compared to many other algorithms, par-
ticularly the M-SPU algorithm which may be thought of as the
most closely related toM-SD. In particular the recovered voiced
speech of the M-SD algorithm sounded louder and crisper (i.e.,
appeared to contain more high frequency content) when com-
pared to theM-SPU algorithm, where the processed audio of the
M-SPU algorithm at low SNRs sounded less natural and rem-
iniscent of talking through a pillow or other low-pass environ-
ment. Such a result is consistent with the observations made in
Section V-A. The differences between the M-SD and other al-
gorithms were most audible with male speakers, which is likely
attributable to the denser harmonic content of male speech com-
pared to that of female speech.
This improved clarity of voiced speech was not observed in

the W-SD case, which appeared to emphasize lower frequency
voiced speech content. The residual noise of the W-SD algo-
rithm also had a musical quality that was not present in the
M-SD and M-SPU algorithms. This is a well known difference
between these two types of algorithms [9]. In the white noise
case, the residual noise of the M-SPU and M-SD algorithms
was only clearly audible at an SNR of 5 dB. Here it had a
broadband characteristic that might be subjectively described
as slightly watery.
Results from the M-SD-R tests sounded almost identical to

those from theM-SPU algorithm, although had a slight synthetic
character. That is, faint artefacts were observed in voiced speech
regions that sounded less natural than the M-SPU algorithm.

Such artefacts were rare in the M-SD-N tests and almost non-
existent in the M-SD-C tests.

VI. CONCLUSIONS

In this paper a non-zero mean MMSE STSA speech enhance-
ment algorithm has been proposed. The non-zero mean concept
is implied by the harmonic plus noise speech model and sup-
ported by STFT observations of speech signals. Under the non-
zero mean assumption, analytical expressions were obtained for
estimates of the clean speech STFT amplitude in the MMSE
sense, and clean speech STFT phase in the maximum-likelihood
sense. Furthermore, estimation methods were proposed for both
the a priori mean and uncertainty parameters of signals with
harmonically related sinusoidal components. As a final step to-
wards a robust implementation, the SD MMSE STFT estimator
was considered under speech presence uncertainty, which was
necessary to counter the negative effects of spurious estimates
of the a priori mean.
The proposed estimator recovers sinusoidal components at

lower local SNRs, and is able to respond to low SNR sinusoidal
components in a shorter time than the MMSE STSA estimator.
Objective testing performed with the PESQ measure indicated
that the proposed estimator is capable of outperforming some
major and fundamental Gaussian STFT-based speech enhance-
ment algorithms under a variety of noise conditions.
The spectral mean estimation described in Section IV-A ex-

ploits the predictability of periodic components in speech with
the use of the spectral estimation techniques described in [13].
Given other more general forms of a priori information are able
to increase the accuracy of this spectral mean estimation (for ex-
ample, with the use of alternate spectral estimation techniques,
a more sophisticated speech model, or the additional channels in
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a multichannel signal), then the proposed algorithm may be fur-
ther improved. Furthermore, as the SD MMSE STFT estimator
considers a fundamental alteration to the statistical assumptions
made for the MMSE STSA estimator in [4], many of the im-
provements that have been recently made to the MMSE STSA
estimator may yet be considered with respect to the SD statis-
tical model. In particular, speech enhancement under the SD
speech model in (7) may be considered under alternative cost
functions [22], [23], with super-Gaussian distributions [11], and
with correlated spectral components [12].

APPENDIX A
PHASE NORMALIZED SIGNAL OBSERVATIONS

Consider a digital signal consisting of a complex exponential
with varying frequency, (in cycles per sample, where

) and amplitude ,

(28)

where is the phase of at in radians. If we wish to
analyze this signal via the STFT, we consider the signal over a
window . Separating the summation
into a set of terms within the window to be analyzed, and a set
of terms prior to the window via the substitution ,

(29)

If is slowly varying so that it may be considered constant
within the window length , the expression may be simplified,

(30)
where is the approximate frequency for

. If analyzed by the STFT (2) at frequency the equation
becomes,

(31)

Here the signal is represented by a term consisting of samples
at the frequency within the window, , and a history of

frequencies, , that adjust the signal’s

phase for that window. is referred to as the phase-
normalized STFT observation of the deterministic component
at frequency .

APPENDIX B
DERIVATION OF THE SD MMSE STFT AMPLITUDE ESTIMATOR

In solving (9) it is informative to consider the form of the a
posteriori pdf, ,

(32)
The joint distribution , denoted as

, is first algebraically manipulated. By making the sub-
stitution , where

, this distributionmay be simplified. Starting
with the equations defined in (7) and (10),

(33)

where and are given in (16) and (15), respectively, and
. By substituting values for and

it can be found that as a function of , (33) takes the
form of a complex Gaussian function with mean given in (14)
and scale . Substituting (33) back into (32), the expression
concerned here may be simplified to,

(34)

The complex exponentials and that feature in
may then be combined into a single magnitude term, and

phase term, ,

(35)
where,

(36)

and,

(37)

Furthermore, by evaluating the magnitude operator in the expo-
nent in the denominator of (35) in terms of real and imaginary
components, it may be seen that (see equation (38) at the top of
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(38)

the page). Noting that the term within the inner integral of the
denominator here is periodic in with period , and using
the integral form of the modified Bessel function for order ,

(39)

we may simplify (38) to,

(40)

Here it can now be seen that the term in the denominator is the
integral of a Rice distribution across its entire domain, therefore
it is equal to 1. This concludes the proof that the a posteriori
distribution in (32) is in fact a complex Gaussian distribution
with mean and scale parameter . The expected value of
the magnitude of such a distribution (i.e., the expression in (9))
is known to be the expected value of a Rice distribution with
centrality parameter and scale parameter [39]. This
expected value has the closed form expression described in (11).
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