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Abstract—Current approaches to speech enhancement usually
consider performance in either the presence of coloured broad-
band noise or periodic noise, but rarely both. In this paper we
present a new speech enhancement technique, derived within
the standard minimum mean-square error (MMSE) short time
spectral amplitude framework, which jointly compensates for
both coloured broadband and periodic noise components. With
this approach, termed noise mean subtracted (NMS) MMSE,
hidden Markov model based frequency tracking techniques are
used to estimate periodic noise components and differentiate
them from periodic components associated with the speech signal.
They are then removed using complex spectral subtraction.
The resulting algorithm is evaluated using perceptual evaluation
of speech quality (PESQ) for both male and female speech
utterances from the NOIZEUS database. It is shown that
when the noise contamination comprises both broadband and
periodic components, this NMS MMSE algorithm outperforms
the standard MMSE algorithm, derived under the assumption
of stochastic noise only. The technique has application in a
variety of scenarios, including those involving emergency radio
communications.

Index Terms—Minimum mean-square error (MMSE), speech
enhancement, deterministic noise, emergency communications.

I. INTRODUCTION

Various mobile speech communications devices are now in
widespread use. The ability to communicate accurately and
reliably on such devices is of great interest to a range of users.
Enabling reliable communication for emergency services per-
sonnel is a particularly difficult problem due to two major
counteracting factors. First, communication for these personnel
is potentially very urgent, therefore, information must be
communicated in a precise and robust manner. Secondly, the
environments in which these personnel communicate can have
significantly adverse effects on a speech signal’s quality and
intelligibility due to prominent background acoustic noise.

Of the several major communication problems emergency
service personnel have with regards to acoustic noise, one of
particular interest in this paper is the presence of fire truck
pump noise in fire fighter communications. This interest is
due to the consistency with which this problem occurs in a fire
fighter’s work, the particularly low signal to noise ratio (SNR)
that is often encountered, and finally the generally unexploited
structure of fire truck pump noise.
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A common communication scenario fire fighters encounter
involves one member of the fire fighter team controlling
the operation of the fire truck water pump. Whilst doing
so, this member must constantly communicate with other
members on the scene who are often out of their line of sight.
Communicating in close proximity to the fire truck water pump
is made difficult by the loud acoustic noise it generates.

The signal to be enhanced in such a scenario is a single-
channel noise corrupted speech signal. A range of fundamental
speech enhancement approaches have been proposed in the
literature [1], [2], [3], [4], all of which aim to exploit spe-
cific characteristics of the speech signal such as its quasi-
stationarity or its harmonic structure. A broad review on
the performance of many of these fundamental approaches
can be seen in [5], [6]. While many refinements have been
made upon these approaches that allow for modelling of the
speech signal with more desirable or accurate characteristics
[7], [8], and consideration of the human auditory perceptual
system, [9], [10], there has been much less attention paid to
how these speech enhancement algorithms may be tailored
for improved performance in the presence of specific noises.
While noise from some noise sources fit very well into the
original assumptions made in the development of certain
speech enhancement algorithms, many noise sources produce
noise that has characteristics that do not agree with these
assumptions. The time-frequency structure seen in fire truck
pump noise is an example.

The time-frequency structure of fire truck pump noise
appears to be a combination of broadband and sinusoidal
components, and is seldom addressed directly in speech en-
hancement. This is surprising due to its common occurance
in radio communication scenarios. Recently such a structure
was addressed with respect to adaptive filtering speech en-
hancement techniques which have been known to be effective
in mitigating periodic noises [11]. These speech enhancement
techniques are less widely researched than the range of broad-
band speech enhancement techniques covered in [12]. Due to
their thorough research in the literature, the theory upon which
broadband speech enhancement techniques are developed is
well understood and furthermore, many problems specific to
speech enhancement have already been addressed for such
techniques. While some broadband speech enhancement tech-
niques will improve audio quality in the presence of periodic
noises [1], [2], [3], it is important to consider what further



gains are possible when periodic noise structure is considered
explicitly. This may allow improved reduction of periodic
noise in speech signals, whilst maintaining the major advances
already made in these speech enhancement techniques. In
this paper the time-frequency structure of fire truck pump
noise is addressed under the framework of broadband speech
enhancement techniques. Furthermore, similar structures are
observed in a range of other noises, indicating this is an
important general problem in speech enhancement. Through
this investigation a new speech enhancement algorithm is
developed, termed the noise mean subtracted minimum mean
square error (NMS MMSE) algorithm, that offers improved
speech enhancement performance in the presence of such
noises.

This paper is organised as follows, Section II describes
the time-frequency structure of fire truck pump noise and
highlights the particular features of this structure that are not
currently exploited in most single channel speech enhancement
algorithms. Section III describes how this time-frequency
structure may be appropriately exploited in a broadband
speech enhancement algorithm. Estimation of the instanta-
neous parameters specifying the structure of fire truck pump
noise is discussed in Section IV. Finally, in Section V, a speech
enhancement algorithm is investigated with and without a
component that works to exploit this structure, revealing the
potential of such an algorithm in the presence of this particular
noise.

II. DESCRIPTION OF THE CONSIDERED NOISE TYPE

The structure of fire truck pump noise is of particular inter-
est with regards to speech enhancement because it does not ad-
here to the assumptions of noise statistics that are made in the
development of most current speech enhancement algorithms.
There are a range of well known speech enhancement methods
(©

in the literature that pertain to white and coloured broadband
noise [1], [2], [13], and periodic noise [14]. However, none of
these noise characterisations appear to apply when analysing
the power spectrogram of fire truck pump noise. Figures 1(a),
1(b) and 1(c) provide three examples of fire truck pump noise.
Upon observing the spectrograms here, it appears that this
noise cannot be accurately classed as purely broadband or
purely periodic noise, but it is an additive mixture of both.
For example, paying specific attention to Fig. 1(a) there is
clearly broadband energy across all frequencies here, but at
least four higher energy sinusoidal components are observed,
starting at approximately 200Hz, 1.25kHz, 2kHz and 2.5kHz,
and increasing in frequency thereafter. Considering the fire
truck pump mechanism that is creating this acoustic noise, this
idea seems reasonable. The water pump mechanism consists
of several rotating components which are likely to create high
energy periodic acoustic signals. In addition, the flow of fluids
both within the pump, and around such rotating components,
is likely to produce turbulence, resulting in noise of a more
stochastic nature.

Analysis of such mixed signals is not a new concept and
thorough reviews can be found in [15], [16]. In such a case,
the signal is considered to consist of several deterministic
sinusoids composing the periodic components and a stochastic
component that may have energy at all frequencies, including
those of the sinusoids. This stochastic/deterministic noise
signal may be modelled as follows:
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where L is the number of sinusoidal components in the noise
model, and for each component [, r; is the amplitude, f; is
the normalized frequency in radians per sample and ¢; is the
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Spectrograms of a range of noises. (a)-(c) Fire truck pump noise samples, (d) boat (predominantly outboard motor) noise, (e) chainsaw noise,

(f) fire truck engine noise. In figures (a) through (c) regions of spectrum containing dominant deterministic noise components have been labelled explicitly
with arrows. Such components in figures (d) through (f) are also clear, but too numerous to warrant explicit labelling. All spectrograms were obtained with a
Hamming window of length 512 samples, and an overlap of 75%. All noise samples were sampled at a rate of 8kHz.



phase. Finally, h[n] is a stochastic process characterised by its
power spectral density (PSD). Equation (1) will be referred to
as the stochastic/deterministic (SD) noise model throughout
the remainder of this paper.

As will be discussed in Section III, the SD noise model
allows a tractable modification to certain speech enhancement
frameworks that accommodates for these observed properties
of the noise explicitly. Although the SD noise model has
been defined here with respect to fire truck pump noise, a
wide range of noise sources consist of rotating and turbulent
mechanisms that produce noise similar to that produced by fire
truck pumps. Therefore, this noise structure is also applicable
in a more general sense. For example, a wide range of motors
such as those in boats and chainsaws, those in various items of
factory machinery and those in certain household appliances,
all involve rotating and turbulent mechanisms that are likely to
result in similar noise structures. This idea is supported upon
observing the power spectrograms emitted by a few of these
noise sources as seen in Figures 1(d), 1(e) and 1(f).

III. DETERMINISTIC NOISE COMPONENTS IN SPEECH
ENHANCEMENT

As mentioned in Section I, a speech enhancement method
involving the use of adaptive filters has been proposed to work
effectively in the presence of noises representable by the SD
noise model [11]. However, it would be imprudent to ignore
the development of the wider class of speech enhancement
algorithms [12] for such common noises. In particular, mini-
mum mean square error short-time spectral amplitude (MMSE
STSA) speech enhancement algorithms [1] are widely known
to provide promising performance [6], [5]. Furthermore, this
method is based on the well researched principles of spectral
analysis [16]. Hence, in these algorithms, the inclusion of
the SD noise model described in Section II is not only
tractable, but allows the use of a set of thoroughly developed
spectral analysis tools. Due to the capable performance of
such a speech enhancement algorithm and its relevance to
the particular problem which this paper addresses, the MMSE
STSA algorithm in [1] is investigated here with respect to the
SD noise model.

Many speech enhancement algorithms consider the en-
hancement of a noisy speech signal in terms of a short-
time framework. This is motivated by the quasi-stationarity
assumed in both the speech and noise signals. Under this
framework, the digital signal

yln] = z[n] + d[n] (2)

is analysed over the interval [0, N] for which stationarity can
be assumed, where x[n] and d[n] represent the speech and
noise processes, respectively. Typically N is a number of
samples corresponding to a timespan in the order of 10-30ms
(i.e., 80-240 samples at a sampling rate of 8kHz). This signal is
then windowed with an appropriate windowing function, w[n],
and transformed via the discrete Fourier transform (DFT) to
yield a set of Fourier coefficients,
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Similar representations may be considered for speech and
noise spectra, X;, = Ape?tex) and D; = CpelFHvs),
respectively. Here k refers to the discrete frequency bin index.
The variables By, Ay and C) refer to the noisy speech,
clean speech and noise amplitudes, respectively, and Sy, oy
and v refer to the noisy speech, clean speech and noise
phases, respectively. In brief, the derivation of a MMSE
STSA speech enhancement algorithm involves considering
how the coefficients, X}, D) and hence Y}, are distributed
and applying Bayes’ theorem to find the MMSE estimate of
the clean speech spectral amplitude Ay, given the observations
Y, under the assumed distributions. In the presence of the
noises shown in Fig. 1, the distribution typically assumed for
the noise in MMSE STSA speech enhancement algorithms [1]
is not entirely applicable. Under these conditions the SD noise
model in (1) is more appropriate as it explicitly accounts for
the periodic components indicated in Fig. 1. In the presence
of this noise model, the noise signal in the STFT domain may
be represented for a given frame as,
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where Wy, ;. and Hy, for all k, are the set of Fourier coeffi-
cients resulting from the STFT of the frequency shifted win-
dowing function, w[n]e?f", and the stochastic process, h[n],
respectively. Whilst Hj, is considered a zero-mean, complex
Gaussian distributed random variable [1], the variables Q; x
may be considered to be deterministic parameters. Due to
this deterministic component, the noise Fourier coefficients,
Dy, may be considered to be complex Gaussian distributed
with a non-zero mean [15], and hence their probability density
function (pdf) may be expressed as,

p(Dr; i, pr) = m\lD exp {—)\; | Dy, — ukeJ”kIQ} , (6)
where the parameters pj and pj define the amplitude and
phase of the non-zero mean, respectively. This distribution is
shown graphically in Fig. 2. Here the distribution is seen to be
a two dimensional function of the real and imaginary parts of
the Fourier coefficients, Djy. The dependence on the complex
mean, uze’P*, is explicitly labelled. This is a deterministic
parameter and it may be considered to be the contribution to
the Fourier coefficient at index k due to sinusoidal components
in the noise signal spectrum.

To incorporate this statistical characterisation into the
MMSE STSA algorithm, U may be defined as,

k
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Figure 2. The distribution of complex DFT noise samples under the assumed
SD model. The mean magnitude, (i, and phase, py, are labelled explicitly.

Then considering Y, = X} + Dy, the conditional probability,

p(Xi|Uy) =
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may be derived. This expression is seen to be identical to that
assumed in the MMSE STSA speech enhancement algorithm
described in [1]. However, the direct spectrum observation Y}
is now modified according to (7), and so the observation, Uy,
in (8), is better thought of as the noise-mean subtracted (NMS)
spectrum.

In practice, g and py are unknown and must be estimated
from the noisy speech signal. An appropriate estimation pro-
cedure is briefly described in Section IV. Once estimated,
the parameters, L, r;, f; and ¢; can be substituted into (1).
By taking the DFT of this equation for 0 < n < N, the
noise mean spectrum puge’P* for frequency bin k may be
obtained. Next, the NMS spectrum is calculated via (7). The
MMSE STSA estimator in the presence of a SD noise model
is then achieved by applying the MMSE STSA gain function
((7) of [1]), to the NMS spectrum of the noisy speech signal.
The resultant complete system is appropriately named NMS
MMSE and can be seen in Fig. 3. The modification made to
the MMSE STSA speech enhancement system, accounting for
the SD noise model, is labelled “Sinusoidal noise component
compensation”. This involves the deterministic parameter es-
timation procedure described in Section IV.

IV. DETERMINISTIC PARAMETER ESTIMATION

From (7) it is clear that there are several parameters that
must be estimated to compute the NMS spectrum. These
include the set of frequencies, amplitudes and phases that
comprise the deterministic part of the spectrum, uze’?*, and
also the discrete PSD characterising the stochastic process,
h[n].

Estimating the frequency of sinusoidal components in a sig-
nal given a finite observation window is a well known problem
for which many possible solutions exist [16]. Because the
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Figure 3. A flow diagram detailing the major processes in the NMS MMSE
speech enhancement system detailed in this paper. Here the signal flow is
from top to bottom.

sinusoidal components in fire truck pump noise are not neces-
sarily harmonically related, more sophisticated techniques that
exploit harmonic relationships between sinusoidal components
of a signal are not relevant. Through experimenting with a
range of frequency estimation methods, we have found that
the maximum-likelihood method [16] is a relatively reliable
frequency estimation technique for fire truck pump noise. For
sinusoidal signals with L sinusoidal components, where the
relationship between sinusoidal components is not harmonic
and is unknown, the maximum-likelihood method of frequency
estimation corresponds to picking the L maxima from the
magnitude discrete time Fourier transform of the signal. Given
that in this case L is also unknown it is proposed here that
instead, local spectrum maxima are selected based on the crest
factor criteria introduced in [17],

C sl
= 175 oo 9
1CaunFl], ®

P[] may be thought of as the ratio of peak spectral magni-
tude to RMS spectral magnitude and is indicitive of the local
“peakiness” of the signal magnitude spectrum. The vector,
Cisuplk], is a subinterval of the noise magnitude spectrum, Cj,
centered at frequency bin . That is, the elements in Cy,p[k],
correspond to the indices

Pk [Iﬁ:]

K= (Q—1)/2<k<k+(Q—1)/2 (10)

of C}, where (2 is the peakiness criteria bandwidth in terms
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Figure 4.  (a) A spectrogram of speech additively mixed with fire truck pump noise at an SNR of 0dB. (b) A set of pitch observations obtained via the

thresholded crest factor measure of (9) for P[] > 2 and Q = 28. (c¢) The resultant HMM tracks of major sinusoidal components that have a likelihood
greater than 0.2. The disruption of the pitch tracks in this figure is representative of the fading in and out of determinstic components in the fire truck pump
noise signal. In all figures here, the signal is sampled at 8kHz, a windowing length of 60ms is used with 75% overlap and an FFT length of 3840 samples.

of a number of DFT bins. Py[x] may be evaluated at all
maxima of CY, although a more selective choice of maxima
may improve computational complexity.

In identifying sinusoidal components of the speech signal
displayed in Fig. 4(a) (corrupted with fire truck pump noise).
Estimates may be obtained by thresholding solutions to (9)
accross all spectral magnitude peaks. The set of estimates
obtained is seen in Fig. 4(b). It is clear here that there are many
spurious peaks. Furthermore, in order to compute the NMS
spectrum, spectral peaks that exist due to the periodicity in a
speech signal must be differentiated from those that compose
the unwanted noise signal. Upon comparing a speech signal
and a fire truck pump noise signal, a major differentiating
factor between the periodicities in each is that frequencies
of sinusoids in fire truck pump noise change less often and
at a slower rate than those in a speech signal. With the use
of a hidden Markov model (HMM), it is possible to impose
the expected time-varying behaviour of a sinusoid’s frequency
upon a set of observed frequency estimates, to obtain a most
likely sequence of estimates, as described in [18]. Using this
technique and paying specific attention to the likelihood of
each of the resultant frequency estimates it is possible to
identify sequences of estimates that best match the time-
varying properties defined in the HMM’s specification. For
example, in the case of fire truck pump noise, the HMM
transition pdf may be set to closely represent frequencies
that change only by small amounts or, more often, not at all

between succesive STFT windows. Therefore sequences based
on only more slowly varying observations will have a higher
likelihood, and may be identified as components of the fire
truck pump noise.

The methods described here are shown in context of the
NMS MMSE algorithm in Fig. 3, where they comprise the
blocks in the “Sinusoidal noise component compensation”
section. The output of this section of the algorithm is seen
in Fig. 4(c), where it is clear that they are able to detect most
of the obvious deterministic noise components accurately in
frequency and time, and reject the vast majority of spurious
spectral peaks seen in Fig. 4(b). The remaining noise signal
parameters ukejpk = ZlL:l Q1,r and Hj, can be estimated via
standard spectral estimation techniques [15], [16].

V. EXPERIMENTAL RESULTS

The NMS MMSE system seen in Fig. 3 was tested over a
variety of speech utterances combined with fire truck pump
noise at a range of SNRs. These results were compared with
the standard MMSE STSA speech enhancement system, iden-
tical to that described in [1], using the perceptual evaluation of
speech quality (PESQ) metric [19]. The results of these tests
are seen in Fig. 5.

A VAD based broadband spectrum estimation component
was used in both systems [20]. Windowing lengths of 60ms
and 30ms, and overlaps of 50% and 75% were used for the
deterministic parameter estimation described in Section IV,



—@&— NMS MMSE
22 | —%— MMSE 4

(8}

PESQ score
%

—5dB 0dB 5dB
SNR

10dB 15dB

Figure 5. PESQ averages of speech enhancement results with the original
MMSE STSA algorithm [1] (labelled MMSE) and the algorithm specified in
this paper (labelled NMS MMSE).

and the STFT processing in the MMSE STSA algorithm [1],
respectively. The longer windowing length generally obtains
more accurate results for the estimation of deterministic noise
components due to their slowly varying nature.

The MMSE STSA speech enhancement algorithm requires
a parameter most commonly referred to as «, that controls
the amount of dependence on a priori information from
previous frames [1]. For all experiments here @ = 0.98.
Speech utterances were taken from the NOIZEUS database
[5]. A total of 20 utterances, 10 male and 10 female, from
four different speakers, were combined and prepared adhering
to the recommendations in [19]. Each was combined with a
randomly selected sample of recorded fire engine pump noise
at specific SNRs (-5dB, 0dB, 5dB, 10dB and 15dB), using the
methods in [21]. The PESQ scores of tests at each SNR were
then averaged to produce a final result. The results of these
tests show that the NMS MMSE algorithm outperforms the
standard MMSE algorithm at all SNRs.

VI. CONCLUSION

This paper has presented a new MMSE STSA speech
enhancement system, named NMS MMSE, that is derived
based on a noise model that allows for both deterministic and
stochastic noise components. These deterministic components
are seen in a variety of common noise sources as shown
in Fig. 1, with the specific case of fire truck pump noise
investigated in this paper. The explicit estimation of determin-
istic noise components has been successfuly achieved using
the techniques described in [15], [16] and [18]. In particular,
the slowly varying nature of deterministic components in fire
truck pump noise is exploited. The extension of this speech
enhancement algorithm to the other noises demonstrated in
Figures 1(d), 1(e) and 1(f) will require consideration of how
deterministic components are distributed in frequency and
time. Specifically, aspects such as the harmonic relationship
of deterministic components, the spectral envelope of deter-
ministic components and the typical patterns resulting from
changes in the frequency of these components may be useful
considerations. Once estimated, the deterministic components
are compensated for using complex spectral subtraction.

Such a system results in more effective attenuation of
these deterministic components than the original MMSE STSA
speech enhancement system, which is derived based only on a
stochastic noise model. The system described here is important
for the attenuation of noises in, for example, critical emergency
services communications. In particular, it is experimentally
proven to be effective in the presence of fire truck pump noise.
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